基于ZigBee技术的无线抄表系统设计

引言
    与采用有线网络通信的楼控产品相比,无线解决方案的优势在于安装布置的灵活性、低廉的安装费用和对楼宇自动化系统进行重新布置的可移动性。ZigBee技术产品以其低功耗、低成本以及优秀的组网能力,被广泛认为将在未来几年中对楼宇自动化和工业产生重大的影响。本文研究的远程抄表系统就基于ZigBee技术实现了无线自动抄表功能。
  
系统硬件结构
    无线抄表系统是由多个ZigBee节点所构成的网络。ZigBee技术支持3种网络拓扑结构,即星形(Star)、网状(Mesh)和树形分簇(Cluster Tree)。星型结构由一个协调器节点(主设备)和一个或多个终端设备(从设备)组成。协调器是一种特殊的全功能设备(Full Function Device,FFD)。FFD是具有转发与路由能力的节点。终端设备可以是FFD或简化功能设备(Reduced Function Device,RFD)。RFD 是最小且最简单的ZigBee 节点,只发送与接收信号,并不起转发器、路由器的作用。如果某个终端设备需要传输数据到另一个终端设备,它会把数据发送给协调器,然后由协调器依次将数据转发到目标终端设备。

    本文设计的ZigBee节点是星型结构中最简单的双节点网络,即由一个协调器节点和一个RFD节点组成。其中,ZigBee每个节点的硬件均由两部分构成:电能测量与处理部分和无线接收/发送部分。而硬件具体实现的功能则由烧写入单片机的程序来决定。无线抄表系统的硬件结构如图1所示。
电能测量与处理模块的工作原理
    电能数据采集模块的核心是美国ADI公司的一款高精度单相有功电能计量芯片ADE7753。该芯片集成了数字积分、参考电压源和温度传感器。它提供了一个和有功能量成比例的脉冲输出(CF)和数字系统校准误差电路(通道偏置校准、相位校准及能量校准)。该芯片适用于单相电路中有功功率、无功功率和视在功率的测量。
ADE7753有电流和电压两个通道,共两路模拟量输入,分别是电流通道V1P、V1N和电压通道V2P、V2N。电压信号经可编程放大器(PGA)放大和模数转换器进行A/D转换变为数字信号,然后,电流信号经电流通道内的高通滤波器HPF滤除DC分量并数字积分后,与经相位校正后的电压信号相乘,产生瞬时功率;此信号经低通滤波LPF2产生瞬时有功功率信号。利用功率偏差校准寄存器的值对有功功率进行校准,放入采样波形数据寄存器中,然后对采样波形数据寄存器的值进行累加,将功率累加值(电能值)存放在电能寄存器中,经DOUT引脚输出。

    电流和电压采集电路把交流电变为可供ADE7753输入的电压。在电流通道中,通过di/dt微分电流传感器实现电流/电压变换。di/dt微分电流传感器基于Rogowski线圈原理。Rogowski线圈由环绕一根长直导线排列、匝数为N的矩形空芯线圈组成。

[Page]
无线收发模块的工作原理
    无线收发模块主要由CC2420芯片和2.4GHz射频天线以及相应的阻抗匹配电路组成。芯片外围电路包括晶振时钟电路、射频输入/输出匹配电路和单片机接口电路三个部分。本设计采用16MHz无源晶振,其负载电容值约为22pF。射频输入/输出匹配电路主要用来匹配芯片的射频输入/输出阻抗,使其输入/输出阻抗为50Ω,同时为芯片内部的功率放大器和低噪声放大器提供直流偏置。CC2420通过4线SPI口(SI、SO、SCLK、CSn)设置芯片的工作模式,并实现读/写缓存数据和读/写状态寄存器。
从天线接收到的射频信号首先经过低噪声放大器和正交下变频到2MHz的中频信号,此混合I/Q信号经过滤波、放大,再通过ADC转变成数字信号。后经自动增益控制、数字解调和解扩,最终恢复出传输的正确数据。发射机部分采用直接上变频。待发送的数据先被送入128字节的发送缓存器中,头帧和起始帧是通过硬件自动产生的。根据IEEE802.15.4标准,所要发送的数据流的每4个比特被32码片的扩频序列扩频后送到DAC。然后,经过低通滤波和上变频的混频后被调制到2.4GHz,并经放大后送到天线发射出去。

系统软件设计
Microchip的ZigBee协议栈

    完整的ZigBee协议栈自上而下由应用层、应用汇聚层、网络层、数据链路层和物理层组成。本硬件设计选择的是Microchip公司的PIC18系列单片机,因此在软件设计中应用了Microchip公司提供的ZigBee协议栈。它随着ZigBee无线协议规范的发展而不断更新。该协议栈有如下特点:使用支持2.4 GHz 频带的Chipcon CC2420 RF 收发器;支持简化功能设备和协调器;在协调器节点中实现对邻接表和绑定表的非易失性存储;支持非时隙的星型网络;可以在大多数PIC18系列单片机之间进行移植;支持Microchip MPLAB C18和Hi-TechPICC-18C编译器;易于添加或删除特定模块的模块化设计。

RFD节点软件设计流程
    这里以RFD节点为例,阐述RFD节点加入由协调器节点组建的网络的设计思想及程序流程。图2是RFD节点主应用程序设计的流程框图。其主要功能是实现硬件的初始化,并根据用户指令进入配置模式来完成绑定操作。绑定的目的是让RFD的地址信息出现在协调器的绑定表中,从而使RFD节点与协调器关联起来。对于第一次完成烧写程序的节点,必须接入计算机终端,按照流程进行配置和绑定操作;对于已经完成绑定操作的节点,在进行下一次操作时,可以无需计算机而进行脱机操作。 

    一个RFD节点从自身配置、绑定完成到加入由协调器组建的网络,然后进入正常工作模式,要经历不同的状态。根据ZigBee协议栈的要求,在主应用程序中定义了6种工作状态。初始化状态(SM_APP_INIT),即节点进行任何操作前的最初状态;配置状态(SM_APP_CONFIG_START),即让节点进入配置模式的状态,主要通过调用配置函数引导用户完成配置操作;正常启动状态(SM_APP_NORMAL_START),当已经配置过的节点再次使用时,无须再次进行节点配置,则直接进入正常启动状态,并尝试加入一个由协调器节点组建的网络;正常启动等待状态(SM_APP_NORMAL_START_WAIT),RFD节点在尝试加入网络的过程中,要经过新网络初始化、网络初始化是否完成、网络初始化是否成功等问答和回应过程;正常工作状态(SM_APP_NORMAL_RUN)下,节点能够最终进入正常工作状态才能完成节点的绑定操作;休眠状态(SM_APP_SLEEP)下,ZigBee节点节能的关键就是能够实现在休眠状态和正常工作状态间的切换,当工作任务完成后能够自动进入休眠状态,而当受到触发后能够自动进入正常工作状态。

结语 
    基于ZigBee技术的无线抄表系统不仅能节约人力成本,还可提高抄表的准确性、实时性,使管理部门能及时准确地获得数据信息。
     
参考文献:
1 白剑波等. ZigBee技术及其在楼宇自动化系统中应用的思考[J].智能建筑与城市信息,2006(1):102-104
2 刘和平等.PIC18Fxxx单片机程序设计及应用[M].北京:北京航空航天大学出版社,2005

不同家庭网络标准化组织的标准应互相兼容

    家庭网络是3C融合的结果,是未来数字生活的组成部分。近年来,国内外家庭网络标准化组织不断涌现,家庭网络技术也不断发展。尽管这些组织的技术路线和技术重点不尽相同,且家庭网络的商业模式有待完善,但随着家庭网络的应用模式和产业化前景越来越明晰,一些关键技术也将成为未来家庭网络标准中的必选技术。通过对国内外家庭网络技术发展趋势的研究,可以发现,基于IPv6的家庭网络构架、低速低功耗无线通信、超宽带无线通信、家庭网关、家庭网络安全机制、家庭多业务访问终端等技术将成为构建未来家庭网络的关键技术,在制定中国未来家庭网络标准时应该重点考虑这些技术。


    为了保证家庭网络产品与标准的一致性,保证基于标准的产品的功能和品质,促进中国家庭网络产业化进程,保证家庭网络标准化工作的可持续发展,规范家庭网络市场,应该加快家庭网络标准符合性测试认证平台的建设。另外,家庭网络的国内标准起步比较早,与国外标准具有同样的技术先进性,同时由于国内外不同标准化组织都在制定家庭网络标准,为了保证未来家庭网络设备能够互连互通,不同家庭网络标准化组织制定的标准应该互相兼容。


基于IPv6的家庭网络结构
   
基于IPv6的家庭网络由家庭网关和各种信息化家电共同组成。在该网络结构中,家庭网关是家庭网络的管理核心、集中控制单元和访问接口。家庭网络的组网模式通常采用一个中心管理节点,附带多个家电成员。这种组网模式支持目前家庭网络普遍采用的多种接入技术,如有线以太网、无线网络802.11、ZigBee、家庭内部电力线网络等。首先,采用通用的网络连接技术IPv6,具备良好的扩展性。IPv6在地址空间、安全性和多媒体应用方面具有优势。IPv6协议上层存在大量的互联网应用,协议下层支持各种物理接入方式,所以家庭网络采用IPv6组网方式,不仅可以充分应用IPv6在互联网领域已有的研究成果,实现家庭网络与互联网的信息交互,还可以实现家庭网络物理连接的多样性。


    其次,采用集中管理。现阶段适合家庭网络的管理模式是集中管理,这一方式可以保证家庭网络应用的多样性,保障家庭网络的安全性。


    再次,通过Web及语音来实现外部对家庭网络的访问。目前互联网领域采用较多的Web服务访问方式,在IPv6网络架构下可以很容易地应用到家庭网络中,从而可以通过Web方式来实现家庭网络支持的各种业务和业务融合。访问家庭网络的另一种方式是语音电话,可以应用于座机和移动电话,而通过移动电话访问家庭网络也是将来的趋势。


短距离低速低功耗无线通信技术
   
短距离低速低功率无线通信技术可以实现家庭网络设备间的控制和状态反馈。家庭网络中的部分设备,特别是某些传感器是由电池供电,要求低功耗。由于室内的布局可能会改变和调整,为了方便安装这些设备,需要通过无线技术来实现对于设备的控制及其信息反馈。因此,家庭网络中需要短距离低功率的射频通信技术来实现这些设备的网络通信。当然,有条件使用电源供电的家庭网络设备也可以通过该技术实现无线通信,从而构成无线家庭控制网络。所以,低速低功耗的无线传输技术将会应用到家庭网络。目前,国际上比较流行的低速低功耗无线通信技术有ZigBee、Z-Wave等(见表1)。


家庭网络超宽带无线通信技术
   
数字音视频及多媒体信息正在成为家庭影音的主要组成部分,这些高速率信息需要在家庭网络设备之间传输,特别是在家庭媒体中心、家庭媒体播放设备之间进行传输。然而,数字音视频及多媒体信息对于传输带宽的要求比较高,而且其播放设备需要不时调整位置,因此,可以通过短距离高带宽的无线通信技术来实现这一信息的传输。目前,国际上比较流行的短距离高速无线通信技术有UWB、Wi-Fi、Home RF、HiperLAN等。

    家庭网关家庭网关支持IPv6协议,提供多种物理接口,存放家庭网络运行的各类信息,实现家庭内部网络的通信以及家庭内部网络与外部网络的通信,保障家庭网络安全控制、访问授权和应用层路由,支持多种内网和外网访问方式。


[Page]
    家庭网关具备实现家庭网络运行的基本功能,如成员管理、安全管理、操作管理、家庭网络远程监视和控制访问、网络运维管理等。另外,家庭网关的主要技术特征包括以下几点:


   第一,家庭网关硬件需至少采用32位以上的嵌入式处理器,支持多种内网及外网接入方式。对家庭内部提供有线以太网接口和802.11无线接口,支持纯IPv6协议;对家庭外部支持有线以太网接口和PSTN接口,可以是IPv4或者IPv6协议。家庭网关软件可采用Linux等操作系统,实现IPv4和IPv6协议栈、嵌入式Web Server、家庭网络中间件、提供IP路由等功能,可以自动为信息家电分配IPv6地址。


   第二,家庭网关实现家庭网络中间件的注册中心、管理中心、信息维护中心、操作分发中心和安全管理中心功能。家庭网关通过家庭网络中间件定义的通信协议来实现家庭网络访问、维护家庭网络的正常运行,家庭网关是家庭网络运行管理中心。


   第三,家庭网关作为家庭网络惟一的访问接口,其重要功能是接收来自于家庭外部及内部的访问。它所支持的外网访问方式可以包括Web Browser访问及电话语音访问。目前,PC、PDA、移动电话等很多移动设备都支持Web浏览,家庭网关可以根据不同浏览器动态生成浏览器界面,从而实现诸如家电远程控制、远程家居监视,以及通过电话语音实施的家庭网络访问,如家电远程控制等。第四,家庭网络中的运维信息是指网络家电的运行状态、运行时间、关键指标等设备运行信息。在家庭网络运行中,为了向不同的家庭网络管理系统提供运维信息,需要由家庭网关定期采集和存储这些信息。


家庭网络安全机制
   
家庭网络中需要通过家庭网关来实现家庭网络的安全管理,主要包括外网安全管理和内网安全控制。外网安全管理主要管理来自于外网的访问,避免外网攻击,实现策略包括访问者身份验证、访问者授权等。采用的身份验证技术有用户名/口令、源IP地址检查、电话号码确认、CA证书等。内网安全控制主要判断网络家电的接入和访问是否安全。采用无线网络接入的网络家电对接入安全要求较高。所以,采用必要的无线接入安全认证是解决家庭网络内网安全控制的一种方法。目前,针对家庭网络尚无成熟完善的安全机制,对比还需要深入研究。


    家庭多业务访问终端对于家庭网络访问可以分为两类:来自于家庭内部和外部的访问。


    家庭内部控制终端应用在家庭网络内部,用以实现来自于家庭网络内部的多种业务。它可以替代家庭内部各种家电的遥控器,而且可以控制家庭媒体中心用以实现多业务融合。这类终端是家庭网络的组成部分,直接连接到家庭网络之中,支持IPv6协议,可以采用802.11、蓝牙等技术接入。


    家庭网络访问终端用于家庭网络外部,来实现外部对于家庭网络的访问,支持家庭网络中已经实现或者准备实现的各种业务。无论家庭网络采用FTTH、ADSL、PSTN或者其他方式接入外部互联网,这类设备均需要支持IP网络,从而实现对于家庭网络的外部访问。由于家庭网络访问终端直接或者间接接入互联网,具备IP地址,所以它可以是具有web浏览器的联网PC机、固定电话、移动电话等,从而实现家庭网络外部访问业务。

基于ZigBee技术的智能家居无线网络系统

摘要:介绍了一种基于ZigBee技术的智能家居无线网络系统。重点阐述了该系统的组成、通讯协议以及无线节点的软硬件设计。该系统在传统的有线家居网络系统的基础上使用ZigBee技术,使其具有成本低、功耗低、覆盖范围大的特点。特别是其符合IEEE802.15.4协议,利用系统与其它符合标准的产品的互联,具有良好的通用性和可扩展性。
关键词:智能家居 无线网络 ZigBee 低功耗

    在智能家居系统中,将无线网络技术应用于家庭网络已成为势不可挡的趋势。这不仅仅是因为无线网络可以提供更大的灵活性、流动性,省去花在综合布线上的费用和精力,而且更因为它符合家庭网络的通讯特点。随着无线网络技术的进一步发展,必将大大促进家庭网络智能化的进程。
    本文介绍的智能家居无线网络系统采用ZigBee技术,它是一种近距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术,符合IEEE802.15.4协议,是IEEE工作组专门为家庭短距离通讯制定的新标准。


ZigBee技术简介
   
ZigBee技术的主要优点有:(1)省电:两节五号电池可使用长达六个月到两年左右的时间;(2)可靠;采用了碰撞避免机制;(3)成本低;(4)时延短;(5)网络容量大;(6)安全:ZigBee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,各种应用可以灵活确定其安全属性。
    ZigBee技术的特点完全符合家庭网络通讯的需要,因此选择ZigBee技术构建智能家居无线网络系统。

智能家居无线网络系统
   
本系统以家庭为单位进行设计安装,每个家庭都安装一个家庭网关、若干个无线通讯ZigBee子节能模块。在家庭网关和每个子节点上都接有一个HeliLink无线网络收发模块(符号ZigBee技术标准的产品),通过这些无线网络收发模块,数据在网关和子节点之间进行传送。其系统组成如图1所示。
    下面介绍各部分的结构及功能。
    家庭网关的结构及功能为:
(1)采用ARM构架的32位嵌入式RISC处理器和.uClinux操作系统;
(2)通过门锁进行自动设防/解防;
(3)遇抢劫或疾病,按紧急按钮,自动向管理中心报警;
(4)每家每户配有自己的网页,通过网页显示小区通知、系统各部分工作状况及数据;
(5)水、电、气各表数据发给牧业管理中心;
(6)通过以太网与小区管理中心通讯;
(7)通过网关上的无线ZigBee(IEEE802.15.4)模块与网络中各子节点进行通讯。

ZigBee无线通讯子节点的功能为:
(1)两路脉冲量数据采集,可采集水、电、气三表数据;
(2)两路安防传感器开关量数据采集,可进行设防/撤防报警、安防报警(红外幕帘、门磁、窗磁、玻璃破碎等);
(3)一路模拟量数据采集;
(4)一路模拟量数据输出;
(5)一路继电器触点输出;
(6)通过无线通讯IEEE802.15.4协议及家庭网关通讯。


通讯协议
1. ZigBee协议的帧结构
    采用符号ZigBee标准的HeliLink模块的数据帧由数据模式、目标地址、数据长度、数据信息与校验和五部分构成,格式如下(数据帧结构中的数据都是16进制数):




    “数据模式”占用一个字节。“目标地址”表示数据帧结构要发送的目标位置(网络中的节点号),它占用一个字节。“数据长度”表示数据帧结构中从“数据1”到“数据n”所占据的字节数,它也占据了一个字节。“数据信息”表示用户要通过UART0传送的命令或者有效数据,占据的字节数由“数据长度”决定。“校验和”是对帧结构中的全部数据(校验和字节除外)进行的校验,采用字节逐位异或的方式实现。“校验和”也占据一个字节。

2. 无线网络通讯协议帧结构
    家庭网关通讯协议帧结构是建立在ZigBee协议帧结构的基础上的,相当于底层协议中的数据场部分。所以帧结构由节点号、功能编码、数据信息三部分组成,如下所示:




    节点号字段数据长度为1字节,其中低四位为数据采集功能编号,高四位为子节点号,如下所示:




    功能编码分为三个部分:方向位、数据类型和功能类型。其格式为:




[Page]
方向位:
    根据主节点作为通讯发送者还是接收者,本系统功能可分为两大类:上行和下行。方向位即决定了这一点。

数据类型:
    数据信息与功能编码关系十分密切,根据功能不同,数据场中数据的内容含义不同;根据数据长度不同,数据类型也不同。

功能类型:
    每一个功能类型对应一种系统功能。通过解析功能类型编码可得到系统功能,对于下行帧,子节点得到主节点通知其执行的命令和需要的数据;对于上行帧,主节点得到子节点返回的信息、数据和命令执行的情况。
    数据信息存放数据,数据信息长度可根据功能编码中的数据类型而定。




无线节点硬件设计
    由于无线节点使用电池供电,且需要安装在三表或电器内部,要求电池体积很小,因此电池的容量不可能太大。希望一颗钮扣电池可以有效工作一年以上。无线通讯需要电池提供足够大的电流,耗电量较大,所以低功耗设计成为子节点设计的重点和难点。
    无线网络节点硬件组成如图2所示,采用TI公司的16位单片机MSP430F1232作为处理器,采用符合ZigBee标准的Heililink无线网络收发模块建立无线通讯,采用RAMTRON公司的铁电存储器FM24LC16存储数据,开关量输出使用松下公司的磁保持继电器TQ2L2—3V,PWM输出放大器采用MAXIM公司的MAX4464。使用锂离子钮扣电池供电,通过采用TI公司的电荷泵IPS60210将电压稳定至3.3V。无线子节点通过查询八位拨码开关确定其功能,可以实现两路脉冲量的计数、两路开关量的输入、两路开关量的输出、一路模拟量的输入、一路模拟量的输出、电池电量采集无线通讯等功能。

(1)处理器
    处理器采用TI公司的16位单片机MSP430F1232。该单片机突出的特点是可以实现极低的功耗,具有五种省电工作模式,而每种工作模式可以通过对时钟的控制实现不同的功耗,其工作在LPM4模式下的功耗电流只有0.1μA,非常适合采用电池供电的系统。片内FLASH ROM用于存储应用程序、通讯协议;UART接口连接无线通信模块;10位A/D转换器实现电池电压检测、模拟量输入;内部16位定时计数器实现PWM输出,经低通滤波后,再由放大器放大,实现模拟量输出;I2C接口连接铁电存储器FRAM。其余的通用输入输出端口分别实现数字量和脉冲量的输入、输出以及拨码开关状态的输入。

(2 )铁电存储器
    存储器采用RAMTRON公司的FM24CL16,它是一种串行非易失性存储器,其特点是可无限次地读写,掉电数据可保护10年;写数据无延时;使用二线制串行总线及其传输规范进行双向传输,这种方式占用脚位少,占用线路板空间小,总线速度可以达到1MHz,静态工作电流仅为1μA。这些特点使其十分适合本设计对功耗低、体积小、数据读写频繁的要求。

(3) 磁保持继电路
    磁保持继电器采用松下公司的TQ2-L2—3V,通过MSP430F1232的输出管脚DO_S、DO_R控制开关管Q1、Q2的开关状态,实现继电器线圈电流的通断控制,从而控制继电器触点的动作。如果采用传统继电器,需要一直提供电流来维持继电器状态,这样功耗很难降低。磁保持继电器具有锁存功能,触点动作后无需继续提供电流,从而降低了功耗。其开关两端可耐压直流220V,交流250V,满足了通断市电的要求。
[Page]
(4)无线网络收发模块
    该模块特点是体积小、内嵌网络通讯协议,符合ZigBee网络层的标准,为IEEE.802.15.4标准兼容产品,可实现高效率发射、高灵敏度接收,无线数据速率高达76.8kbit/s。通过串口与MSP430F1232进行通讯,将获得的数据无线发送出去。

(5) 拨码开关
    八位拨码开关的状态决定该子节点的节点号和其实现的功能。


无线节点软件设计
   
鉴于节点使用的通用性要求,需要上电后根据拨码开关确定子节点号及其所要完成的功能。其主要功能包括水电气三表的数据采集和存储、报警信息的获取、设防撤防状态的获取和以上信息数据的无线发送。根据拨码开关的状态确定节点需要完成的其中一项或几项工作,并调用相应的初始化程序。由于无线通讯模块的功耗较大,CPU大部分时间都处于休眠状态,通过各级中断唤醒CPU和恢复无线通讯模块的正常工作。数据的无线发送和接收要遵守家庭网关通讯协议。

    系统主程序流程图如图3所示。系统上电后,先关闭看门狗定时器,开关电源进入SNOOZE节功状态,同时关闭无线通讯模块电源,进行I2C接口的初始化,读取拨码开关状态,并根据拨码开关的状态进行单片机通用I/O口的初始化,以确定其作为脉冲量输入端口还是开关量输入端口,或是撤防设防输入端口。其中,若作为脉冲量输入端口,则调用相应脉冲量初始化程序,设置其端口为上升沿触发;若作为开关量输入端口,则调用相应开关量初始化程序,设置其端口为下降触发;若作为撤防设防输入端口,则调用设防撤防初始化程序,当前端口状态为设防状态时,进行撤防初始化,设置其端口为上升沿触发。当前端口状态为撤防状态时,进行设防初始化,设置其端口为下降沿触发。




    端口初始化结束之后,进行串行通讯UART接口初始化,打开UART接收中断使能,使其能响应网关发送给子节点的命令。定时器连续工作在计数模式,打开计数器溢出中断使能。

    单片机各部分初始化结束后,进入LPM3休眠模式,只有ACLK始终保持工作,因此在串行通讯UART和定时器初始化中,将其工作时钟定义为ACLK是十分重要的,否则进入LPM3休眠模式后,串口和定时器将停止工作和相应中断。进入LPM3休眠模式后,系统的功耗最低。

    系统可响应I/O中断,当其作为脉冲量输入端口时,脉冲量上升沿触发中断,经过去抖处理后,脉冲量计数增1,遇到进位时,调用函数处理进位,最后将计数值写入FRAM,进入LPM3休眠模式。当其作为开关量输入端口时,开关量下降沿触发中断,停止计数器计数,打开电源,打开串行通讯,重复发送报警信息,直到收到网关应答信息时才停止报警,恢复定时器计数,进入LPM3休眠模式。

    数据发送要遵循通讯协议,图4所示为数据发送程序流程图。由于文章篇幅所限,这里就不多述了。

    本文介绍的基于ZigBee技术的智能家居无线网络系统,由于其具有低成本、低功耗、较远的覆盖范围及通用性的特点,将成为智能家居系统中的又一亮点,必将给现代智能家居系统带来一场新的变革。

全面解读Zigbee技术

    对于嵌入式系统应用,往往需要相互间的通信,以交换测量数据和控制指令。目前采用的方式多是有线连接,包括点对点或总线方式,如RS485、CAN、Modbus等。随着无线网络通信技术的发展,在一些不便于或需要消除有线连接的场合,无线通信技术便有了它的用武之地。



    目前,市场上已有多家公司推出应用于近距离通信的RF芯片产品,如工作在2.4GHz的NRF24E1(Nordic)、CC1020/2500(Chipcon),工作在300~450 MHz的MAX7044/7033(Maxim)等。不少嵌入式应用也采用了这类技术,但它们大部分只提供解决无线通信的射频通道,没有标准规范(或采用自己的专用标准)来制定MAC层、链路层和网络层的通信协议,不具备兼容性;对通信的控制软件完全依赖目标系统设计,由用户自己完成,不仅额外增加了工作量,而且编制代码的可靠性、效率都较低,对组网应用更可能存在问题;不同厂家的产品不具备互操作能力,不具有通用性。
    Zigbee是一种近年来才兴起的无线网络通信技术标准。它出现的时间较短,2004年底才由Zigbee联盟发布了1.0版本规范,尚未进入大规模的商业化生产和应用;但是,它的上升势头十分明显,已有Chipcon、FREESCALE、CompXs、Ember四家公司通过了Zigbee联盟对其产品所作的测试和兼容性验证。从2006年开始,基于Zigbee的无线通信产品和应用迅速得到普及和高速发展。

Zigbee技术及应用
1.主要技术特点
    Zigbee一词源自蜜蜂群在发现花粉位置时,通过跳ZigZag形舞蹈来告知同伴,达到交换信息的目的,可以说是一种小的动物通过简捷的方式实现“无线”的沟通。人们借此称呼一种专注于低功耗、低成本、低复杂度、低速率的近程无线网络通信技术,亦包含寓意。
    Zigbee技术并不是完全独有、全新的标准。它的物理层、MAC层和链路层采用了IEEE802.15.4(无线个人区域网)协议标准,但在此基础上进行了完善和扩展。其网络层、应用会聚层和高层应用规范(API)由Zigbee联盟进行了制定,整个协议架构如图1所示。
图1 Zigbee协议栈架构
    Zigbee是以一个个独立的工作节点为依托,通过无线通信组成星状、片状或网状网络,因此,每个节点的功能并非都相同。为降低成本,系统中大部分的节点为子节点,从组网通信上,它只是其功能的一个子集,称为精简功能设备;而另外还有一些节点,负责与所控制的子节点通信、汇集数据和发布控制,起到通信路由的作用,称之为全功能设备(也称为协调器)。

    Zigbee的特点突出,尤其在低功耗、低成本上,主要有以下几个方面:
①低功耗。在低耗电待机模式下,2节5号干电池可支持1个节点工作6~24个月,甚至更长。这是Zigbee的突出优势。相比较,蓝牙能工作数周、WiFi可工作数小时。
②低成本。通过大幅简化协议(不到蓝牙的1/10),降低了对通信控制器的要求,按预测分析,以8051的8位微控制器测算,全功能的主节点需要32KB代码,子功能节点少至4KB代码,而且Zigbee免协议专利费。
③低速率。Zigbee工作在20~250kbps的较低速率,分别提供250kbps(2.4GHz)、40kbps(915MHz)和20kbps(868MHz)的原始数据吞吐率,满足低速率传输数据的应用需求。
④近距离。传输范围一般介于10~100m之间,在增加RF发射功率后,亦可增加到1~3km,这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。
⑤短时延。Zigbee的响应速度较快,一般从睡眠转入工作状态只需15ms,节点连接进入网络只需30ms,进一步节省了电能。相比较,蓝牙需要3~10s、WiFi需要3s。
⑥高容量。Zigbee可采用星状、片状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254个子节点;同时主节点还可由上一层网络节点管理,最多可组成65000个节点的大网。
⑦高安全。Zigbee提供了三级安全模式,包括无安全设定、使用接入控制清单(ACL)防止非法获取数据以及采用高级加密标准(AES128)的对称密码,以灵活确定其安全属性。
⑧免执照频段。采用直接序列扩频在工业科学医疗(ISM)频段,2.4GHz(全球)、915MHz(美国)和868MHz(欧洲)。

[Page]
2.Zigbee产品应用
    Zigbee主要应用在距离短、功耗低且传输速率不高的各种电子设备之间,典型的传输数据类型有周期性数据、间歇性数据和低反应时间数据。根据设想,它的应用目标主要是:工业控制(如自动控制设备、无线传感器网络),医护(如监视和传感),家庭智能控制(如照明、水电气计量及报警),消费类电子设备的遥控装置、PC外设的无线连接等领域。
一般而言,满足如下一些特点的应用场合,是Zigbee应用极具优势的地方:
①需要无线通信交换信息的低成本装置;
②数据的交换量较小、传输的速率要求不高;
③功耗要求极低,采用电池供电且需要维持较长时间;
④需要多个(尤其是大量)设备组成无线通信网络,主要进行监测和控制的场合。
    依据Zigbee联盟和参与联盟的主要厂商的基本设想,产品应提供一站式的解决方案,以方便应用,使那些不熟悉RF技术的人员也能迅速上手。因此其产品不仅提供RF的无线信道解决方案,同时其内置的协议栈将Zigbee的通信、组网等无线沟通方面的工作已完全由产品实现,用户只需要根据协议提供的标准接口进行应用软件编程。由于协议栈的简化,完成Zigbee协议的内嵌处理器一般可采用低价低功耗的8位MCU。
    Chipcon公司推出的高度整合的系统级射频收发器CC2430,如图3所示,集成了RF前端、128KB闪存、8KB RAM以及8051八位MCU核;另外还集成了模数转换器(ADC)、定时器、AES128协同处理器、看门狗、32kHz晶振休眠定时器、上电复位和掉电检测电路,以及21个可编程I/O引脚。使这款产品就是一个具备Zigbee功能的SoC,可用于各种Zigbee无线网络节点,包括协调器、路由器和终端设备等。
图3 CC2430 Zigbee芯片
    此外,不少厂商也推出了Zigbee的产品和全套解决方案。如FREESCALE公司发布的低功耗2.45GHz集成射频器件MC13192,包含802.15.4物理层,支持星型和网状网络,并在一个配套的MCU上实现Zigbee的协议栈;传输速率为250kbps,采用正交QPSK调制和直接序列扩频编码,通过1个四线串行接口与MCU通信。Helicomm公司推出的IPLink1200 Zigbee开发工具和产品,包含符合802.15.4标准的2.4GHz射频组件、低功耗的8位微控制器、Zigbee网络软件和全波长天线,每次接力通信都能在75m范围内提供250kbps的速率,支持最新的RS232mesh透明串行模式,能在网状或多次跳接(multihop)无线网络内支持串行数据路由,速率最高可达38.4kbps。
[Page]
    可以看出,一些国际著名的半导体厂商已在积极推出Zigbee产品,有望在今后一段时间通过商业化推进,使Zigbee产品应用得到极大扩展。但同时,也有一些RF厂商在发展自己的专有产品,如Zensys公司就积极推进它的ZWave无线协议,尤其在家庭自动化领域与其争夺市场。另外,Dust公司坚持使用自己的技术。Ember公司虽然大举进军Zigbee领域,但也计划继续提供自己的专有EmberNet技术。可以说,Zigbee的应用并非一片坦途,需要Zigbee联盟及厂商的持续努力和市场的广泛认同。

与其他几种无线通信技术的比较
    目前,市场上的近距离无线通信技术主要有无线局域网WiFi、蓝牙和一些专用标准(如Adhoc网等)的产品。一些大公司为开拓市场和应用领域,也在积极研究和制定一些新的无线组网通信技术标准,如无线USB、超宽带通信UWB和WiMax等。下面对这些技术作一些简要介绍和比较。
    蓝牙技术发展从1999年起已经历了多个年头,一直受芯片价格高、厂商支持力度不够、传输距离限制及抗干扰能力差等问题的困扰。目前主要应用在无线耳机等不需要很高传输带宽的领域,且互通性方面也存在问题。
WiFi在Intel的大力支持下,借迅驰处理器迅速占领市场;采用IEEE802.11b标准,使用2.4GHz直接序列扩频,最大数据传输速率为11Mbps,并可根据信号强弱把传输率调整为5.5Mbps、2Mbps和1Mbps带宽;采用最新的802.11g时,速率可达54Mbps,是目前应用最广的无线网络传输协议。
    借助USB在PC上的广泛应用,无线USB也受Intel、HP、微软等几家PC领域大公司的力推,已于近期制定了无线USB规范。使用WiMedia联盟的MBOFDM超宽带MAC和PHY层,通信距离在3~10m,最高速率在480Mbps,有望短期内在PC周边设备的无线连接上得到大量应用。
    UWB是一种未来短距离宽带无线传输技术。由于未采用通常无线收发中的载波调制技术,因此它不需要混频、过滤和射频/中频转换模块,实现了低成本、低功耗和高带宽性能。目前有两大技术阵营竞争技术标准,预期的通信距离5~10m,速率甚至可高达1Gbps,非常适合于家用消费电子产品之间的大容量数据传输。
    作为WiFi下一代技术的WiMax,被设想成一项无线城域网接入技术,在传输距离和速度方面均胜过WiFi,最高接入速率为70Mbps,信号传输半径可达到50km。图4是以上几种无线通信技术的速率/距离比较。

    从图4中看,主要的无线技术都集中在1Mbps以上的速率,新的标准还在追求更快的速率;而Zigbee恰恰是填补低速率端无线通信技术的空缺,与其他标准在应用上几乎无交叉。在实际应用环境中,低速率、低成本的无线通信在自动控制、无线传感器网络、家居自动化等诸多领域更贴近日常生活,同样具有广泛的市场。从现今的市场看,每一种无线通信技术的产品都有各自的一些特点,或在距离、或在成本、或在速率等方面。因此,在今后一段时间内,虽然会有一些竞争,但仍会有多种无线通信技术的产品在市场上共存。

结 语
    无线组网通信是当今工业控制、计算机应用、家庭自动化等方面技术发展的一个热点,而低功耗、低成本的无线网络要求令Zigbee应运而生;高度集成化的软、硬件架构和产品,也使应用人员如虎添翼,更快、更方便地进行最终产品设计。这些显示出Zigbee具有超强的生命力和优势,应用前景十分看好,值得广大嵌入式应用的技术人员关注,并加入到它的应用行列。

近距离无线技术的介绍和对比

目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrDA)。同时还有一些具有发展潜力的近距离无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信NFC、WiMedia、GPS、DECT、无线1394和专用无线系统等。它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。但是没有一种技术可以完美到足以满足所有的需求。

蓝牙技术
bluetooth技术是近几年出现的,广受业界关注的近距离无线连接技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。
蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m的传输距离。
蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。该技术还陆续获得PC行业业界巨头的支持。1998年,蓝牙技术协议由Ericsson、IBM、Intel、NOKIA、Toshiba等5家公司达成一致。
蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。新版802.15.1a基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。
蓝牙技术遭遇了最大的障碍是过于昂贵。突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。这就使得许多用户不愿意花大价钱来购买这种无线设备。因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。

Wi-Fi技术
Wi-Fi(Wireless Fidelity,无线高保真)也是一种无线通信协议,正式名称是IEEE802.11b,与蓝牙一样,同属于短距离无线通信技术。Wi-Fi速率最高可达11Mb/s。虽然在数据安全性方面比蓝牙技术要差一些,但在电波的覆盖范围方面却略胜一筹,可达100m左右。
Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速度接入Web。但实际上,如果有多个用户同时通过一个点接入,带宽被多个用户分享,Wi-Fi的连接速度一般将只有几百kb/s的信号不受墙壁阻隔,但在建筑物内的有效传输距离小于户外。
WLAN未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。目前这一技术的用户主要来自机场、酒店、商场等公共热点场所。Wi-Fi技术可将Wi-Fi与基于XML或Java的Web服务融合起来,可以大幅度减少企业的成本。例如企业选择在每一层楼或每一个部门配备802.11b的接入点,而不是采用电缆线把整幢建筑物连接起来。这样一来,可以节省大量铺设电缆所需花费的资金。
最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率也是2.4GHz,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如802.11a和802.11g的先后推出,Wi-Fi的应用将越来越广泛。速度更快的802.11g使用与802.11b相同的正交频分多路复用调制技术。它工作在2.4GHz频段,速率达54Mb/s。根据最近国际消费电子产品的发展趋势判断,802.11g将有可能被大多数无线网络产品制造商选择作为产品标准。
微软推出的桌面操作系统WindowsXP和嵌入式操作系统WindowsCE,都包含了对Wi-Fi的支持。其中,WindowsCE同时还包含对Wi-Fi的竞争对手蓝牙等其它无线通信技术的支持。由于投资802.11b的费用降低,许多厂商介入这一领域。Intel推出了集成WLAN技术的笔记本电脑芯片组,不用外接无线网卡,就可实现无线上网。

IrDA技术
红外线数据协会IrDA(Infrared Data Association)成立于1993年。起初,采用IrDA标准的无线设备仅能在1m范围内以115.2kb/s速率传输数据,很快发展到4Mb/s以及16Mb/s的速率。
IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。目前它的软硬件技术都很成熟,在小型移动设备,如PDA、手机上广泛使用。事实上,当今每一个出厂的PDA及许多手机、笔记本电脑、打印机等产品都支持IrDA。
IrDA的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。
IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于2台(非多台)设备之间的连接。而蓝牙就没有此限制,且不受墙壁的阻隔。IrDA目前的研究方向是如何解决视距传输问题及提高数据传输率。

NFC技术
NFC(Near Field Communication,近距离无线传输)是由Philips、NOKIA和Sony主推的一种类似于RFID(非接触式射频识别)的短距离无线通信技术标准。和RFID不同,NFC采用了双向的识别和连接。在20cm距离内工作于13.56MHz频率范围。
NFC最初仅仅是遥控识别和网络技术的合并,但现在已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。
NFC通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。有了NFC,多个设备如数码相机、PDA、机顶盒、电脑、手机等之间的无线互连,彼此交换数据或服务都将有可能实现。
此外,NFC还可以将其它类型无线通讯(如Wi-Fi和蓝牙)“加速”,实现更快和更远距离的数据传输。每个电子设备都有自己的专用应用菜单,而 NFC可以创建快速安全的连接,无需在众多接口的菜单中进行选择。与知名的蓝牙等短距离无线通讯标准不同的是,NFC的作用距离进一步缩短且不像蓝牙那样需要有对应的加密设备。
同样,构建Wi-Fi家族无线网络需要多台具有无线网卡的电脑、打印机和其它设备。除此之外,还得有一定技术的专业人员才能胜任这一工作。而NFC被置入接入点之后,只要将其中两个靠近就可以实现交流,比配置Wi-Fi连结容易得多。

NFC有三种应用类型:
设备连接。除了无线局域网,NFC也可以简化蓝牙连接。比如,手提电脑用户如果想在机场上网,他只需要走近一个Wi-Fi热点即可实现。
实时预定。比如,海报或展览信息背后贴有特定芯片,利用含NFC协议的手机或PDA,便能取得详细信息,或是立即联机使用信用卡进行票卷购买。而且,这些芯片无需独立的能源。
移动商务。飞利浦Mifare技术支持了世界上几个大型交通系统及在银行业为客户提供Visa卡等各种服务。索尼的FeliCa非接触智能卡技术产品在中国香港及深圳、新加坡、日本的市场占有率非常高,主要应用在交通及金融机构。
总而言之,这项新技术正在改写无线网络连接的游戏规则,但NFC的目标并非是完全取代蓝牙、Wi-Fi等其他无线技术,而是在不同的场合、不同的领域起到相互补充的作用。所以如今后来居上的NFC发展态势相当迅速!

Zigbee技术
ZigBee主要应用在短距离范围之内并且数据传输速率不高的各种电子设备之间。ZigBee名字来源于蜂群使用的赖以生存和发展的通信方式,蜜蜂通过跳ZigZag形状的舞蹈来分享新发现的食物源的位置、距离和方向等信息。
ZigBee联盟成立于2001年8月。2002年下半年,Invensys、Mitsubishi、Motorola以及Philips半导体公司四大巨头共同宣布加盟ZigBee联盟,以研发名为ZigBee的下一代无线通信标准。到目前为止,该联盟大约已有27家成员企业。所有这些公司都参加了负责开发ZigBee物理和媒体控制层技术标准的IEEE 802.15.4工作组。
ZigBee联盟负责制定网络层以上协议。目前,标准制订工作已完成。ZigBee协议比蓝牙、高速率个人区域网或802.11x无线局域网更简单实用。[Page]
Zigbee可以说是蓝牙的同族兄弟,它使用2.4GHz波段,采用跳频技术。与蓝牙相比,ZigBee更简单、速率更慢、功率及费用也更低。它的基本速率是250kb/s,当降低到28kb/s时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。可以比蓝牙更好地支持游戏、消费电子、仪器和家庭自动化应用。人们期望能在工业监控、传感器网络、家庭监控、安全系统和玩具等领域拓展ZigBee的应用。
ZigBee技术特点主要包括以下几个部分:
数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。
功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。这也是ZigBee的支持者所一直引以为豪的独特优势。
成本低。因为ZigBee数据传输速率低,协议简单,所以大大降低了成本;积极投入ZigBee开发的Motorola以及Philips,均已在2003年正式推出芯片。Philips预估,应用于主机端的芯片成本和其它终端产品的成本比蓝牙更具价格竞争力。
网络容量大。每个ZigBee网络最多可支持255个设备,也就是说每个ZigBee设备可以与另外254台设备相连接。
有效范围小。有效覆盖范围10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。
工作频段灵活。使用的频段分别为2.4GHz、868MHz(欧洲)及915MHz(美国),均为免执照频段。
根据ZigBee联盟目前的设想,ZigBee的目标市场主要有PC外设(鼠标、键盘、游戏操控杆)、消费类电子设备(TV、VCR、CD、 VCD、DVD等设备上的遥控装置)、家庭内智能控制(照明、煤气计量控制及报警等)、玩具(电子宠物)、医护(监视器和传感器)、工控(监视器、传感器和自动控制设备)等非常广阔的领域。

UWB技术
超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。
UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输,在近年来得到了迅速发展。它在非常宽的频谱范围内采用低功率脉冲传送数据而不会对常规窄带无线通信系统造成大的干扰,并可充分利用频谱资源。基于UWB技术而构建的高速率数据收发机有着广泛的用途。
UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,低截获能力,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入,非常适于建立一个高效的无线局域网或无线个域网(WPAN)。
UWB主要应用在小范围、高分辨率、能够穿透墙壁、地面和身体的雷达和图像系统中。除此之外,这种新技术适用于对速率要求非常高(大于100Mb/s)的LANs或PANs。
UWB最具特色的应用将是视频消费娱乐方面的无线个人局域网(PANs)。现有的无线通信方式,802.11b和蓝牙的速率太慢,不适合传输视频数据;54Mb/s速率的802.11a标准可以处理视频数据,但费用昂贵。而UWB有可能在10m范围内,支持高达110Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。
具有一定相容性和高速、低成本、低功耗的优点使得UWB较适合家庭无线消费市场的需求:UWB尤其适合近距离内高速传送大量多媒体数据以及可以穿透障碍物的突出优点,让很多商业公司将其看作是一种很有前途的无线通信技术,应用于诸如将视频信号从机顶盒无线传送到数字电视等家庭场合。当然,UWB未来的前途还要取决于各种无线方案的技术发展、成本、用户使用习惯和市场成熟度等多方面的因素。

小  结
无论你看到的或正在使用的通讯方式是什么,虽然每一种无线技术将遇到它们自身的特殊任务,并且人们在各个地方使用不同的技术,但是它们将有可能配合工作。对于企业来说,绕过主要的无线通信运营商可以节约可观的成本。从长远来看,企业应密切关注各种无线通信技术的发展,选择最适合自己需要的一种标准。

近距离无线通信技术及应用前景

  摘要 首先概述近距离无线通信技术的划分以及标准结构,然后着重介绍ZigBee技术、高速/低速UWB和Bluetooth这3种目前比较受关注的近距离无线通信技术,最后简单介绍近距离无线通信的应用前景。

  关键词 近距离无线通信 ZigBee UWB Bluetooth


1、概述

  当今,无线通信在人们的生活中扮演越来越重要的角色,低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈追求,因此近距离无线通信正逐渐引起越来越广泛的注意。

  一般来讲,近距离无线通信技术分为高速近距离无线通信和低速近距离无线通信两类。高速近距离无线通信最高数据速率>100Mbit/s,通信距离<10m,典型技术有高速UWB、WirelessUSB;低速近距离无线通信的最低数据速率<1Mbit/s,通信距离<100m,典型技术有Zigbee、低速UWB、Bluetooth。

  近距离无线通信标准结构包括两部分,如图1所示。其中物理层和MAC层由IEEE 802.15标准系列定义,网络层及安全层等上层协议由各自联盟开发。


图1 近距离无线通信标准结构


  目前比较受关注的近距离无线通信技术是:ZigBee技术、高速/低速UWB和Bluetooth。

2、ZigBee技术

  ZigBee是一种低速短距离无线通信技术。它的出发点是希望发展一种拓展性强、易布建的低成本无线网络,强调低耗电、双向传输和感应功能等特色。

  ZigBee PHY和MAC层由IEEE802.15.4标准定义。802.15.4协议已于2003年发布,上层协议正在制定之中。802.15.4定义了两个物理层标准,分别对应于2.4GHz频段和868/915MHz频段。两者均基于直接序列扩频,物理层数据包格式相同,区别在于工作频率、调制技术、扩频码片长度和传输速率,具体见表1。

表1 2.4GHz频段和868/915MHz频段物理层的区别

工作频率(MHz)